Displaying 61 – 80 of 248

Showing per page

Domination of operators in the non-commutative setting

Timur Oikhberg, Eugeniu Spinu (2013)

Studia Mathematica

We consider majorization problems in the non-commutative setting. More specifically, suppose E and F are ordered normed spaces (not necessarily lattices), and 0 ≤ T ≤ S in B(E,F). If S belongs to a certain ideal (for instance, the ideal of compact or Dunford-Pettis operators), does it follow that T belongs to that ideal as well? We concentrate on the case when E and F are C*-algebras, preduals of von Neumann algebras, or non-commutative function spaces. In particular, we show that, for C*-algebras...

Effective constructions of separable quotients of Banach spaces.

Marek Wójtowicz (1997)

Collectanea Mathematica

A simple way of obtaining separable quotients in the class of weakly countably determined (WCD) Banach spaces is presented. A large class of Banach lattices, possessing as a quotient c0, l1, l2, or a reflexive Banach space with an unconditional Schauder basis, is indicated.

Ensembles singuliers associés aux espaces de Banach réticulés

Denis Feyel (1981)

Annales de l'institut Fourier

À tout espace de Banach fonctionnel réticulé est associée une quasi-topologie. Avec une hypothèse de dénombrabilité convenable, cette notion généralise la topologie polonaise classique. Les ensembles singuliers sont les ensembles discrets, clairsemés etc. que l’on caractérise à l’aide des mesures qu’ils portent. Le théorème de Baire admet aussi une généralisation. Application est faite au modèle probabiliste et à la théorie du potentiel.

Equivalences involving (p,q)-multi-norms

Oscar Blasco, H. G. Dales, Hung Le Pham (2014)

Studia Mathematica

We consider (p,q)-multi-norms and standard t-multi-norms based on Banach spaces of the form L r ( Ω ) , and resolve some question about the mutual equivalence of two such multi-norms. We introduce a new multi-norm, called the [p,q]-concave multi-norm, and relate it to the standard t-multi-norm.

Factorization and domination of positive Banach-Saks operators

Julio Flores, Pedro Tradacete (2008)

Studia Mathematica

It is proved that every positive Banach-Saks operator T: E → F between Banach lattices E and F factors through a Banach lattice with the Banach-Saks property, provided that F has order continuous norm. By means of an example we show that this order continuity condition cannot be removed. In addition, some domination results, in the Dodds-Fremlin sense, are obtained for the class of Banach-Saks operators.

Fréchet-spaces-valued measures and the AL-property.

S. Okada, W. J. Ricker (2003)

RACSAM

Associated with every vector measure m taking its values in a Fréchet space X is the space L1(m) of all m-integrable functions. It turns out that L1(m) is always a Fréchet lattice. We show that possession of the AL-property for the lattice L1(m) has some remarkable consequences for both the underlying Fréchet space X and the integration operator f → ∫ f dm.

Generalized Helly spaces, continuity of monotone functions, and metrizing maps

Lech Drewnowski, Artur Michalak (2008)

Fundamenta Mathematicae

Given an ordered metric space (in particular, a Banach lattice) E, the generalized Helly space H(E) is the set of all increasing functions from the interval [0,1] to E considered with the topology of pointwise convergence, and E is said to have property (λ) if each of these functions has only countably many points of discontinuity. The main objective of the paper is to study those ordered metric spaces C(K,E), where K is a compact space, that have property (λ). In doing so, the guiding idea comes...

Currently displaying 61 – 80 of 248