Displaying 261 – 280 of 399

Showing per page

Sets invariant under projections onto two dimensional subspaces

Simon Fitzpatrick, Bruce Calvert (1991)

Commentationes Mathematicae Universitatis Carolinae

The Blaschke–Kakutani result characterizes inner product spaces E , among normed spaces of dimension at least 3, by the property that for every 2 dimensional subspace F there is a norm 1 linear projection onto F . In this paper, we determine which closed neighborhoods B of zero in a real locally convex space E of dimension at least 3 have the property that for every 2 dimensional subspace F there is a continuous linear projection P onto F with P ( B ) B .

Sobre relativización de convergencias en G(H).

M.ª Carmen de las Obras Loscertales y Nasarre (1984)

Stochastica

Given a real separable Hilbert space H, G(H) denotes the Geometry of the closed linear subspaces of H, S = {E(n) | n belonging to N} a sequence of G(H) and [E] the closed linear hull of E. The weak, strong and other convergences in G(H) were defined and characterized in previous papers. Now we study the convergence of sequences {E(n) ∩ F | n belonging to N} when {E(n)} is a convergent sequence and F is a subspace of G(H), and we show that these convergences hold, if this intersection exists. Conversely,...

Some characterization of locally nonconical convex sets

Witold Seredyński (2004)

Czechoslovak Mathematical Journal

A closed convex set Q in a local convex topological Hausdorff spaces X is called locally nonconical (LNC) if for every x , y Q there exists an open neighbourhood U of x such that ( U Q ) + 1 2 ( y - x ) Q . A set Q is local cylindric (LC) if for x , y Q , x y , z ( x , y ) there exists an open neighbourhood U of z such that U Q (equivalently: b d ( Q ) U ) is a union of open segments parallel to [ x , y ] . In this paper we prove that these two notions are equivalent. The properties LNC and LC were investigated in [3], where the implication L N C L C was proved in general, while...

Some generalization of Steinhaus' lattice points problem

Paweł Zwoleński (2011)

Colloquium Mathematicae

Steinhaus' lattice points problem addresses the question of whether it is possible to cover exactly n lattice points on the plane with an open ball for every fixed nonnegative integer n. This paper includes a theorem which can be used to solve the general problem of covering elements of so-called quasi-finite sets in Hilbert spaces. Some applications of this theorem are considered.

Some geometric properties of typical compact convex sets in Hilbert spaces

F. de Blasi (1999)

Studia Mathematica

An investigation is carried out of the compact convex sets X in an infinite-dimensional separable Hilbert space , for which the metric antiprojection q X ( e ) from e to X has fixed cardinality n+1 ( n arbitrary) for every e in a dense subset of . A similar study is performed in the case of the metric projection p X ( e ) from e to X where X is a compact subset of .

Some more weak Hubert spaces

Alec Edgington (1991)

Studia Mathematica

We construct, by a variation of the method used to construct the Tsirelson spaces, a new family of weak Hilbert spaces which contain copies of l₂ inside every subspace.

Currently displaying 261 – 280 of 399