Displaying 181 – 200 of 390

Showing per page

Near metric properties of function spaces

P. Gartside, E. Reznichenko (2000)

Fundamenta Mathematicae

"Near metric" properties of the space of continuous real-valued functions on a space X with the compact-open topology or with the topology of pointwise convergence are examined. In particular, it is investigated when these spaces are stratifiable or cometrisable.

Network character and tightness of the compact-open topology

Richard N. Ball, Anthony W. Hager (2006)

Commentationes Mathematicae Universitatis Carolinae

For Tychonoff X and α an infinite cardinal, let α def X : = the minimum number of α  cozero-sets of the Čech-Stone compactification which intersect to X (generalizing -defect), and let rt X : = min α max ( α , α def X ) . Give C ( X ) the compact-open topology. It is shown that τ C ( X ) n χ C ( X ) rt X = max ( L ( X ) , L ( X ) def X ) , where: τ is tightness; n χ is the network character; L ( X ) is the Lindel"of number. For example, it follows that, for X Čech-complete, τ C ( X ) = L ( X ) . The (apparently new) cardinal functions n χ C and rt are compared with several others.

Nevanlinna algebras

A. Haldimann, H. Jarchow (2001)

Studia Mathematica

The Nevanlinna algebras, α p , of this paper are the L p variants of classical weighted area Nevanlinna classes of analytic functions on = z ∈ ℂ: |z| < 1. They are F-algebras, neither locally bounded nor locally convex, with a rich duality structure. For s = (α+2)/p, the algebra F s of analytic functions f: → ℂ such that ( 1 - | z | ) s | f ( z ) | 0 as |z| → 1 is the Fréchet envelope of α p . The corresponding algebra s of analytic f: → ℂ such that s u p z ( 1 - | z | ) s | f ( z ) | < is a complete metric space but fails to be a topological vector space. F s is also...

Non-natural topologies on spaces of holomorphic functions

Dietmar Vogt (2013)

Annales Polonici Mathematici

It is shown that every proper Fréchet space with weak*-separable dual admits uncountably many inequivalent Fréchet topologies. This applies, in particular, to spaces of holomorphic functions, solving in the negative a problem of Jarnicki and Pflug. For this case an example with a short self-contained proof is added.

On a space of smooth functions on a convex unbounded set in ℝn admitting holomorphic extension in ℂn

Il’dar Musin, Polina Yakovleva (2012)

Open Mathematics

For some given logarithmically convex sequence M of positive numbers we construct a subspace of the space of rapidly decreasing infinitely differentiable functions on an unbounded closed convex set in ℝn. Due to the conditions on M each function of this space admits a holomorphic extension in ℂn. In the current article, the space of holomorphic extensions is considered and Paley-Wiener type theorems are established. To prove these theorems, some auxiliary results on extensions of holomorphic functions...

On absolutely representing systems in spaces of infinitely differentiable functions

Yu. Korobeĭnik (2000)

Studia Mathematica

The main part of the paper is devoted to the problem of the existence of absolutely representing systems of exponentials with imaginary exponents in the spaces C ( G ) and C ( K ) of infinitely differentiable functions where G is an arbitrary domain in p , p≥1, while K is a compact set in p with non-void interior K̇ such that K ¯ ̇ = K . Moreover, absolutely representing systems of exponents in the space H(G) of functions analytic in an arbitrary domain G p are also investigated.

On an integral-type operator from Privalov spaces to Bloch-type spaces

Xiangling Zhu (2011)

Annales Polonici Mathematici

Let H(B) denote the space of all holomorphic functions on the unit ball B of ℂⁿ. Let φ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0. We study the integral-type operator C φ g f ( z ) = 0 1 f ( φ ( t z ) ) g ( t z ) d t / t , f ∈ H(B). The boundedness and compactness of C φ g from Privalov spaces to Bloch-type spaces and little Bloch-type spaces are studied

On boundary behaviour of the Bergman projection on pseudoconvex domains

M. Jasiczak (2005)

Studia Mathematica

It is shown that on strongly pseudoconvex domains the Bergman projection maps a space L v k of functions growing near the boundary like some power of the Bergman distance from a fixed point into a space of functions which can be estimated by the consecutive power of the Bergman distance. This property has a local character. Let Ω be a bounded, pseudoconvex set with C³ boundary. We show that if the Bergman projection is continuous on a space E L ( Ω ) defined by weighted-sup seminorms and equipped with the topology...

On locally convex extension of H in the unit ball and continuity of the Bergman projection

M. Jasiczak (2003)

Studia Mathematica

We define locally convex spaces LW and HW consisting of measurable and holomorphic functions in the unit ball, respectively, with the topology given by a family of weighted-sup seminorms. We prove that the Bergman projection is a continuous map from LW onto HW. These are the smallest spaces having this property. We investigate the topological and algebraic properties of HW.

Currently displaying 181 – 200 of 390