On dyadic spaces and almost Milyutin spaces
Assume a finite set of functions in , the space of bounded analytic functions on the open unit disc. We give a sufficient condition on a function in to belong to the norm-closure of the ideal generated by , namely the propertyfor some function : satisfying The main feature in the proof is an improvement in the contour-construction appearing in L. Carleson’s solution of the corona-problem. It is also shown that the propertyfor some constant , does not necessary imply that is...
Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions f: D → ℂ satisfying .
We provide a complete isomorphic classification of the Banach spaces of continuous functions on the compact spaces , the topological sums of Cantor cubes , with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. In particular, we prove that it is relatively consistent with ZFC that the only isomorphism classes of spaces with ≥ ℵ₀ and α ≥ ω₁ are the trivial ones. This result leads to some elementary questions on large cardinals.
We study the spaces where Ω is a disc with radius R and μ is a given probability measure on [0,R[. We show that, depending on μ, is either isomorphic to l₁ or to . Here Aₙ is the space of all polynomials of degree ≤ n endowed with the L₁-norm on the unit sphere.
We introduce and examine the notion of dense weak openness. In particular we show that multiplication in C(X) is densely weakly open whenever X is an interval in ℝ.
We investigate isomorphic embeddings T: C(K) → C(L) between Banach spaces of continuous functions. We show that if such an embedding T is a positive operator then K is the image of L under an upper semicontinuous set-function having finite values. Moreover we show that K has a π-base of sets whose closures are continuous images of compact subspaces of L. Our results imply in particular that if C(K) can be positively embedded into C(L) then some topological properties of L, such as countable...