Page 1

Displaying 1 – 7 of 7

Showing per page

Berezin and Berezin-Toeplitz quantizations for general function spaces.

Miroslav Englis (2006)

Revista Matemática Complutense

The standard Berezin and Berezin-Toeplitz quantizations on a Kähler manifold are based on operator symbols and on Toeplitz operators, respectively, on weighted L2-spaces of holomorphic functions (weighted Bergman spaces). In both cases, the construction basically uses only the fact that these spaces have a reproducing kernel. We explore the possibilities of using other function spaces with reproducing kernels instead, such as L2-spaces of harmonic functions, Sobolev spaces, Sobolev spaces of holomorphic...

Boundary behaviour of holomorphic functions in Hardy-Sobolev spaces on convex domains in ℂⁿ

Marco M. Peloso, Hercule Valencourt (2010)

Colloquium Mathematicae

We study the boundary behaviour of holomorphic functions in the Hardy-Sobolev spaces p , k ( ) , where is a smooth, bounded convex domain of finite type in ℂⁿ, by describing the approach regions for such functions. In particular, we extend a phenomenon first discovered by Nagel-Rudin and Shapiro in the case of the unit disk, and later extended by Sueiro to the case of strongly pseudoconvex domains.

Currently displaying 1 – 7 of 7

Page 1