Page 1

Displaying 1 – 6 of 6

Showing per page

Stability of the bases and frames reproducing kernels in model spaces

Anton Baranov (2005)

Annales de l'institut Fourier

We study the bases and frames of reproducing kernels in the model subspaces K Θ 2 = H 2 Θ H 2 of the Hardy class H 2 in the upper half-plane. The main problem under consideration is the stability of a basis of reproducing kernels k λ n ( z ) = ( 1 - Θ ( λ n ) ¯ Θ ( z ) ) / ( z - λ ¯ n ) under “small” perturbations of the points λ n . We propose an approach to this problem based on the recently obtained estimates of derivatives in the spaces K Θ 2 and produce estimates of admissible perturbations generalizing certain results of W.S. Cohn and E. Fricain.

Stratonovich-Weyl correspondence for discrete series representations

Benjamin Cahen (2011)

Archivum Mathematicum

Let M = G / K be a Hermitian symmetric space of the noncompact type and let π be a discrete series representation of G holomorphically induced from a unitary character of K . Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple ( G , π , M ) by a suitable modification of the Berezin calculus on M . We extend the corresponding Berezin transform to a class of functions on M which contains the Berezin symbol of d π ( X ) for X in the Lie algebra 𝔤 of G . This allows...

Currently displaying 1 – 6 of 6

Page 1