The search session has expired. Please query the service again.
The aim of this paper is to establish the theorem of atomic decomposition of weighted Bergman spaces Ap(Ω), where Ω is a domain of finite type in C2. We construct a kernel function H(z,w) which is a reproducing kernel for Ap(Ω) and we prove that the associated integral operator H is bounded in Lp(Ω).
It is proved that a subspace of a holomorphic Hilbert space is completely determined by their distances to the reproducing kernels. A simple rule is established to localize common zeros of a subspace of the Hardy space of the unit disc. As an illustration we show a series of discs of the complex plan free of zeros of the Riemann -function.
We study the duals of the spaces of harmonic functions in the unit ball of with values in a Banach space X, belonging to the Bochner space with weight , denoted by . For 0 < α < p-1 we construct continuous projections onto providing a decomposition . We discuss the conditions on p, α and X for which and , 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.
The aim of this paper is to prove two new uncertainty principles for the Dunkl-Gabor transform. The first of these results is a new version of Heisenberg’s uncertainty inequality which states that the Dunkl-Gabor transform of a nonzero function with respect to a nonzero radial window function cannot be time and frequency concentrated around zero. The second result is an analogue of Benedicks’ uncertainty principle which states that the Dunkl-Gabor transform of a nonzero function with respect to...
Currently displaying 1 –
6 of
6