Analytic rings
Relations between homomorphisms on a real function algebra and different properties (such as being inverse-closed and closed under bounded inversion) are studied.
We prove that a biseparating map between spaces of vector-valued continuous functions is usually automatically continuous. However, we also discuss special cases when this is not true.
As usual will denote the ring of real-valued continuous functions on a Tychonoff space . It is well-known that if and are realcompact spaces such that and are isomorphic, then and are homeomorphic; that is determines. The restriction to realcompact spaces stems from the fact that and are isomorphic, where is the (Hewitt) realcompactification of . In this note, a class of locally compact spaces that includes properly the class of locally compact realcompact spaces is exhibited...
En el presente artículo se expone de modo resumido una caracterización de los anillos de funciones diferenciables de una variedad.
Many authors have recently studied compact and weakly compact homomorphisms between function algebras. Among them, Lindström and Llavona [2] treat weakly compact continuous homomorphisms between algebras of type C(T) when T is a completely regular Hausdorff space.Llavona asked wether the results in [2] are valid in the case of algebras of differentiable functions on Banach spaces. The purpose of this note is to give an affirmative answer to this question, by proving that weakly compact homomorphisms...
En esta nota consideramos una clase de espacios topológicos de Hausdorff localmente compactos (Ω) con la propiedad de que el espacio de Banach C0(Ω) de todas las funciones continuas con valores escalares definidas en Ω que se anulan en el infinito, equipado con la norma supremo, contiene una copia de C0 norma-uno complementada, mientras que C (βΩ) contiene una copia de l∞ linealmente isométrica.
We determine the convolution operators on the real analytic functions in one variable which admit a continuous linear right inverse. The characterization is given by means of a slowly decreasing condition of Ehrenpreis type and a restriction of hyperbolic type on the location of zeros of the Fourier transform μ̂(z).
By studying algebra homomorphisms, which act as point evaluations on each countable subset, we obtain improved results on the question when all algebra homomorphisms are point evaluations.
Dans ce travail, nous étudions le problème de décomposicion suivant: Étant donnés deux ouverts bornés de Cp, Ω1 et Ω2 (vérifiant certaines conditions) et étant donnée une matrice A(z), carrée d'ordre n, dont les coefficients sont des fonctions holomorphes dans Ω1 ∩ Ω2, ayant une prolongement C∞ à l'adhérence (Ω1 ∩ Ω2), peut-on trouver deux matrices A1(z), A2(z) holomorphes dans Ω1 et Ω2 respectivement et se prolongeant de manière C∞ à (Ω1) et (Ω2) telles que sur Ω1 ∩ Ω2 on aitA = A1A2.
Under some mild assumptions, non-linear diameter-preserving bijections between (vector-valued) function spaces are characterized with the help of a well-known theorem of Ulam and Mazur. A necessary and sufficient condition for the existence of a diameter-preserving bijection between function spaces in the complex scalar case is derived, and a complete description of such maps is given in several important cases.