Lebesgue points in variable exponent spaces.
If the minimum problem () is the limit, in a variational sense, of a sequence of minimum problems with obstacles of the type then () can be written in the form without any additional constraint.
Supposing that the metric space in question supports a fractional diffusion, we prove that after introducing an appropriate multiplicative factor, the Gagliardo seminorms of a function f ∈ L²(E,μ) have the property , where ℰ is the Dirichlet form relative to the fractional diffusion.
We collect and extend results on the limit of as σ → 0⁺ or σ → 1¯, where Ω is ℝⁿ or a smooth bounded domain, k ∈ 0,1, l ∈ ℕ, p ∈ [1,∞), and is the intrinsic seminorm of order l+σ in the Sobolev space . In general, the above limit is equal to , where c and [·] are, respectively, a constant and a seminorm that we explicitly provide. The particular case p = 2 for Ω = ℝⁿ is also examined and the results are then proved by using the Fourier transform.
We study limiting K- and J-methods for arbitrary Banach couples. They are related by duality and they extend the methods already known in the ordered case. We investigate the behaviour of compact operators and we also discuss the representation of the methods by means of the corresponding dual functional. Finally, some examples of limiting function spaces are given.
The estimate is shown to hold if and only if is elliptic and canceling. Here is a homogeneous linear differential operator of order on from a vector space to a vector space . The operator is defined to be canceling if . This result implies in particular the classical Gagliardo–Nirenberg–Sobolev inequality, the Korn–Sobolev inequality and Hodge–Sobolev estimates for differential forms due to J. Bourgain and H. Brezis. In the proof, the class of cocanceling homogeneous linear differential...
We present, discuss and apply two reiteration theorems for triples of quasi-Banach function lattices. Some interpolation results for block-Lorentz spaces and triples of weighted -spaces are proved. By using these results and a wavelet theory approach we calculate (θ,q)-spaces for triples of smooth function spaces (such as Besov spaces, Sobolev spaces, etc.). In contrast to the case of couples, for which even the scale of Besov spaces is not stable under interpolation, for triples we obtain stability...
We study continuity envelopes of function spaces and where the weight belongs to the Muckenhoupt class ₁. This essentially extends partial forerunners in [13, 14]. We also indicate some applications of these results.
The paper deals with local means and wavelet bases in weighted and unweighted function spaces of type and on ℝⁿ and on ⁿ.
The paper deals with local means and wavelet bases in function spaces of Besov and Triebel-Lizorkin type with local Muckenhoupt weights.
In this paper we establish the existence and uniqueness of the local solutions to the incompressible Euler equations in , , with any given initial data belonging to the critical Besov spaces . Moreover, a blowup criterion is given in terms of the vorticity field....