On Gardings inequality.
Niels Jacob, Bernd Schomburg (1986)
Aequationes mathematicae
Robert Černý (2012)
Czechoslovak Mathematical Journal
We give a version of the Moser-Trudinger inequality without boundary condition for Orlicz-Sobolev spaces embedded into exponential and multiple exponential spaces. We also derive the Concentration-Compactness Alternative for this inequality. As an application of our Concentration-Compactness Alternative we prove that a functional with the sub-critical growth attains its maximum.
Sarikaya, Mehmet Zeki, Yildrim, Hüseyin (2006)
Lobachevskii Journal of Mathematics
Wojciech M. Zajączkowski (2002)
Applicationes Mathematicae
Using the Il'in integral representation of functions, imbedding theorems for weighted anisotropic Sobolev spaces in 𝔼ⁿ are proved. By the weight we assume a power function of the distance from an (n-2)-dimensional subspace passing through the domain considered.
Jain, Pankaj (1994)
Publications de l'Institut Mathématique. Nouvelle Série
Balinsky, A., Evans, W.D., Hundertmark, D, Lewis, R.T. (2008)
Banach Journal of Mathematical Analysis [electronic only]
Prokhorov, D. V., Stepanov, V. D. (2002)
Sibirskij Matematicheskij Zhurnal
Davide Guidetti (1991)
Mathematische Zeitschrift
Pavel Krejčí (1988)
Aplikace matematiky
The main goal of the paper is to formulate some new properties of the Ishlinskii hysteresis operator , which characterizes e.g. the relation between the deformation and the stress in a non-perfectly elastic (elastico-plastic) material. We introduce two energy functionals and derive the energy inequalities. As an example we investigate the equation describing the motion of a mass point at the extremity of an elastico-plastic spring.
A. Pełczyński, K. Senator (1986)
Studia Mathematica
Tord Sjödin (1982)
Studia Mathematica
Philip Brenner (1982)
Mathematica Scandinavica
Latvala, Visa (2002)
Annales Academiae Scientiarum Fennicae. Mathematica
V. I. Kolyada, A. K. Lerner (2005)
Studia Mathematica
We investigate the classical embedding . The sharp asymptotic behaviour as s → 1 of the operator norm of this embedding is found. In particular, our result yields a refinement of the Bourgain, Brezis and Mironescu theorem concerning an analogous problem for the Sobolev-type embedding. We also give a different, elementary proof of the latter theorem.
Bernhard Kawohl (1980)
Commentationes Mathematicae Universitatis Carolinae
Colin Bennett, Karl Rudnick (1980)
Vesa Mustonen, Matti Tienari (1999)
Mathematica Bohemica
We study the mappings of monotone type in Orlicz-Sobolev spaces. We introduce a new class as a generalization of and extend the definition of quasimonotone map. We also prove existence results for equations involving monotone-like mappings.
Haroske, Dorothee D. (2000)
Zeitschrift für Analysis und ihre Anwendungen
David Adams, John Lewis (1982)
Studia Mathematica
Demidenko, G.V. (2004)
Sibirskij Matematicheskij Zhurnal