Displaying 181 – 200 of 4028

Showing per page

A remark on complex powers of analytic functions

Giuseppe Zampieri (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Sia K n un compatto, f 0 una funzione analitica all'intorno di K , ed m la massima molteplicità in K degli zeri di f ; si prova che la potenza f λ ( λ , R e λ > 1 m ) è integrabile in K . L'estensione meromorfa dell'applicazione λ f λ da R e λ > 0 a tutto (con valori in 𝒟 ( K ) anziché in L 1 ( K ) ) era già stata provata in [1] e [2].

A remark on supra-additive and supra-multiplicative operators on C ( X )

Zafer Ercan (2007)

Mathematica Bohemica

M. Radulescu proved the following result: Let X be a compact Hausdorff topological space and π C ( X ) C ( X ) a supra-additive and supra-multiplicative operator. Then π is linear and multiplicative. We generalize this result to arbitrary topological spaces.

A remark on the asymmetry of convolution operators

Saverio Giulini (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A convolution operator, bounded on L q ( n ) , is bounded on L p ( n ) , with the same operator norm, if p and q are conjugate exponents. It is well known that this fact is false if we replace n with a general non-commutative locally compact group G . In this paper we give a simple construction of a convolution operator on a suitable compact group G , wich is bounded on L q ( G ) for every q [ 2 , ) and is unbounded on L p ( G ) if p [ 1 , 2 ) .

A remark on the div-curl lemma

Pierre Gilles Lemarié-Rieusset (2012)

Studia Mathematica

We prove the div-curl lemma for a general class of function spaces, stable under the action of Calderón-Zygmund operators. The proof is based on a variant of the renormalization of the product introduced by S. Dobyinsky, and on the use of divergence-free wavelet bases.

A remark on the multipliers of the Haar basis of L¹[0,1]

H. M. Wark (2015)

Studia Mathematica

A proof of a necessary and sufficient condition for a sequence to be a multiplier of the normalized Haar basis of L¹[0,1] is given. This proof depends only on the most elementary properties of this system and is an alternative proof to that recently found by Semenov & Uksusov (2012). Additionally, representations are given, which use stochastic processes, of this multiplier norm and of related multiplier norms.

Currently displaying 181 – 200 of 4028