Displaying 2181 – 2200 of 4027

Showing per page

On the dependence of the orthogonal projector on deformations of the scalar product

Zbigniew Pasternak-Winiarski (1998)

Studia Mathematica

We consider scalar products on a given Hilbert space parametrized by bounded positive and invertible operators defined on this space, and orthogonal projectors onto a fixed closed subspace of the initial Hilbert space corresponding to these scalar products. We show that the projector is an analytic function of the scalar product, we give the explicit formula for its Taylor expansion, and we prove some algebraic formulas for projectors.

On the diametral dimension of weighted spaces of analytic germs

Michael Langenbruch (2016)

Studia Mathematica

We prove precise estimates for the diametral dimension of certain weighted spaces of germs of holomorphic functions defined on strips near ℝ. This implies a full isomorphic classification for these spaces including the Gelfand-Shilov spaces S ¹ α and S α for α > 0. Moreover we show that the classical spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions are not isomorphic.

On the Djrbashian kernel of a Siegel domain

Elisabetta Barletta, Sorin Dragomir (1998)

Studia Mathematica

We establish an inversion formula for the M. M. Djrbashian A. H. Karapetyan integral transform (cf. [6]) on the Siegel domain Ω n = ζ n : ϱ ( ζ ) > 0 , ϱ ( ζ ) = I m ( ζ 1 ) - | ζ ' | 2 . We build a family of Kähler metrics of constant holomorphic curvature whose potentials are the ϱ α -Bergman kernels, α > -1, (in the sense of Z. Pasternak-Winiarski [20] of Ω n . We build an anti-holomorphic embedding of Ω n in the complex projective Hilbert space ( H α 2 ( Ω n ) ) and study (in connection with work by A. Odzijewicz [18] the corresponding transition probability amplitudes....

On the duality between p -modulus and probability measures

Luigi Ambrosio, Simone Di Marino, Giuseppe Savaré (2015)

Journal of the European Mathematical Society

Motivated by recent developments on calculus in metric measure spaces ( X , d , m ) , we prove a general duality principle between Fuglede’s notion [15] of p -modulus for families of finite Borel measures in ( X , d ) and probability measures with barycenter in L q ( X , m ) , with q dual exponent of p ( 1 , ) . We apply this general duality principle to study null sets for families of parametric and non-parametric curves in X . In the final part of the paper we provide a new proof, independent of optimal transportation, of the equivalence...

On the embedding of 2-concave Orlicz spaces into L¹

Carsten Schütt (1995)

Studia Mathematica

In [K-S 1] it was shown that A v e π ( i = 1 n | x i a π ( i ) | 2 ) 1 / 2 is equivalent to an Orlicz norm whose Orlicz function is 2-concave. Here we give a formula for the sequence a 1 , . . . , a n so that the above expression is equivalent to a given Orlicz norm.

Currently displaying 2181 – 2200 of 4027