On the trace of potentials
We extend to the case 1 < p the results obtained by Geymonat and Krasucki for p = 2 on the characterization of the traces of W2,p(Ω) for a bounded Lipschitz domain.
We investigate when the trigonometric conjugate to the periodic general Franklin system is a basis in C(𝕋). For this, we find some necessary and some sufficient conditions.
2000 Mathematics Subject Classification: 44A15, 44A35, 46E30In this paper we prove that the partial Dunkl integral ST(f) of f converges to f, as T → +∞ in L^∞(νµ) and we show that the Dunkl transform Fµ(f) of f is in L^1(νµ) when f belongs to a suitable Besov-Dunkl space. We also give sufficient conditions on a function f in order that the Dunkl transform Fµ(f) of f is in a L^p -space.* Supported by 04/UR/15-02.
In [5], we characterized the uniform convexity with respect to the Luxemburg norm of the Besicovitch-Orlicz space of almost periodic functions. Here we give an analogous result when this space is endowed with the Orlicz norm.
We prove that in Orlicz spaces endowed with Orlicz norm the uniformly normal structure is equivalent to the reflexivity.
We study the class of singular measures whose Fourier partial sums converge to 0 in the metric of the weak space; symmetric sets of constant ratio occur in an unexpected way.
We obtain the necessary and sufficient condition of weak star uniformly rotund point in Orlicz spaces.
The concept of WM point is introduced and the criterion of WM property in Orlicz function spaces endowed with Luxemburg norm is given.
In this paper, we introduce the concept of WM point and obtain the criterion of WM points for Orlicz function spaces endowed with Orlicz norm and the criterion of WM property for Orlicz space.
We obtain the criterion of the WM property for Orlicz sequence spaces endowed with the Orlicz norm.