Besov spaces on local fields
Let Γ be a compact d-set in ℝⁿ with 0 < d ≤ n, which includes various kinds of fractals. The author shows that the Besov spaces defined by two different and equivalent methods, namely, via traces and quarkonial decompositions in the sense of Triebel are the same spaces as those obtained by regarding Γ as a space of homogeneous type when 0 < s < 1, 1 < p < ∞ and 1 ≤ q ≤ ∞.
We give the atomic decomposition of the inhomogeneous Besov spaces defined on symmetric Riemannian spaces of noncompact type. As an application we get a theorem of Bernstein type for the Helgason-Fourier transform.
It is shown that Bessel potentials have a representation in term of measure when the underlying space is Orlicz. A comparison between capacities and Lebesgue measure is given and geometric properties of Bessel capacities in this space are studied. Moreover it is shown that if the capacity of a set is null, then the variation of all signed measures of this set is null when these measures are in the dual of an Orlicz-Sobolev space.
We determine the norm in , 1 < p < ∞, of the operator , where and are respectively the cosine and sine Fourier transforms on the positive real axis, and I is the identity operator. This solves a problem posed in 1984 by M. S. Birman [Bir] which originated in scattering theory for unbounded obstacles in the plane. We also obtain the -norms of the operators aI + bH, where H is the Hilbert transform (conjugate function operator) on the circle or real line, for arbitrary real a,b. Best...
We investigate best constants for inequalities between the Orlicz norm and Luxemburg norm in Orlicz spaces.
En la Sección 1 se pueban resultados abstractos sobre preduales y sobre bidualidad de espacios (LF). Sea E = indn En un espacio (LF), ponemos H = indn Hn para una sucesión de subespacios de Fréchet Hn de En con Hn ⊂ Hn+1. Investigamos bajo qué condiciones el espacio E es canónicamente (topológicamente isomorfo a) el bidual inductivo (H'b)'i o (incluso) al bidual fuerte de H. Los resultados abstractos se aplican en la Sección 2, especialmente a espacios (LF) ponderados de funciones holomorfas, pero...
This article provides entropic inequalities for binomial-Poisson distributions, derived from the two point space. They appear as local inequalities of the M/M/∞ queue. They describe in particular the exponential dissipation of Φ-entropies along this process. This simple queueing process appears as a model of “constant curvature”, and plays for the simple Poisson process the role played by the Ornstein-Uhlenbeck process for Brownian Motion. Some of the inequalities are recovered by semi-group ...