On absolute retracts, P(S) and complemented subspaces of
The main part of the paper is devoted to the problem of the existence of absolutely representing systems of exponentials with imaginary exponents in the spaces and of infinitely differentiable functions where G is an arbitrary domain in , p≥1, while K is a compact set in with non-void interior K̇ such that . Moreover, absolutely representing systems of exponents in the space H(G) of functions analytic in an arbitrary domain are also investigated.
Let H(B) denote the space of all holomorphic functions on the unit ball B of ℂⁿ. Let φ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0. We study the integral-type operator , f ∈ H(B). The boundedness and compactness of from Privalov spaces to Bloch-type spaces and little Bloch-type spaces are studied
We show that in the space C[-1,1] there exists an orthogonal algebraic polynomial basis with optimal growth of degrees of the polynomials.
We investigate Banach space automorphisms focusing on the possibility of representing their fragments of the form for A,B ⊆ ℕ infinite by means of linear operators from into , infinite A×B-matrices, continuous maps from B* = βB∖B into A*, or bijections from B to A. This leads to the analysis of general bounded linear operators on . We present many examples, introduce and investigate several classes of operators, for some of them we obtain satisfactory representations and for others give...
We give a characterization of compact spaces K such that the Banach space C(K) is isomorphic to the space c₀(Γ) for some set Γ. As an application we show that there exists an Eberlein compact space K of weight and with the third derived set empty such that the space C(K) is not isomorphic to any c₀(Γ). For this compactum K, the spaces C(K) and are examples of weakly compactly generated (WCG) Banach spaces which are Lipschitz isomorphic but not isomorphic.
Define as the subspace of consisting of all harmonic functions in B, where B is the ball in the n-dimensional Euclidean space and E is any Banach space. Consider also the space consisting of all harmonic E*-valued functions g such that is bounded for some m>0. Then the dual is represented by through , . This extends the results of S. Bell in the scalar case.