Displaying 601 – 620 of 4028

Showing per page

Characterization of Strongly Exposed Points in General Köthe-Bochner Banach Spaces

Houcine Benabdellah, My Hachem Lalaoui Rhali (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We study strongly exposed points in general Köthe-Bochner Banach spaces X(E). We first give a characterization of strongly exposed points of the set of X-selections of a measurable multifunction Γ. We then apply this result to the study of strongly exposed points of the closed unit ball of X(E). Precisely we show that if an element f is a strongly exposed point of B X ( E ) , then |f| is a strongly exposed point of B X and f(ω)/∥ f(ω)∥ is a strongly exposed point of B E for μ-almost all ω ∈ S(f).

Characterization of the convolution operators on quasianalytic classes of Beurling type that admit a continuous linear right inverse

José Bonet, Reinhold Meise (2008)

Studia Mathematica

Extending previous work by Meise and Vogt, we characterize those convolution operators, defined on the space ( ω ) ( ) of (ω)-quasianalytic functions of Beurling type of one variable, which admit a continuous linear right inverse. Also, we characterize those (ω)-ultradifferential operators which admit a continuous linear right inverse on ( ω ) [ a , b ] for each compact interval [a,b] and we show that this property is in fact weaker than the existence of a continuous linear right inverse on ( ω ) ( ) .

Characterizations of spreading models of l 1

Persephone Kiriakouli (2000)

Commentationes Mathematicae Universitatis Carolinae

Rosenthal in [11] proved that if ( f k ) is a uniformly bounded sequence of real-valued functions which has no pointwise converging subsequence then ( f k ) has a subsequence which is equivalent to the unit basis of l 1 in the supremum norm. Kechris and Louveau in [6] classified the pointwise convergent sequences of continuous real-valued functions, which are defined on a compact metric space, by the aid of a countable ordinal index “ γ ”. In this paper we prove some local analogues of the above Rosenthal ’s theorem...

Characterizing translation invariant projections on Sobolev spaces on tori by the coset ring and Paley projections

M. Wojciechowski (1993)

Studia Mathematica

We characterize those anisotropic Sobolev spaces on tori in the L 1 and uniform norms for which the idempotent multipliers have a description in terms of the coset ring of the dual group. These results are deduced from more general theorems concerning invariant projections on vector-valued function spaces on tori. This paper is a continuation of the author’s earlier paper [W].

Ciesielski and Franklin systems

Gegham G. Gevorkyan (2006)

Banach Center Publications

A short survey of results on classical Franklin system, Ciesielski systems and general Franklin systems is given. The principal role of the investigations of Z. Ciesielski in the development of these three topics is presented. Recent results on general Franklin systems are discussed in more detail. Some open problems are posed.

Clarkson type inequalities and their relations to the concepts of type and cotype.

Mikio Kato, Lars-Erik. Persson, Yasuji Takahashi (2000)

Collectanea Mathematica

We prove some multi-dimensional Clarkson type inequalities for Banach spaces. The exact relations between such inequalities and the concepts of type and cotype are shown, which gives a conclusion in an extended setting to M. Milman's observation on Clarkson's inequalities and type. A similar investigation conceming the close connection between random Clarkson inequality and the corresponding concepts of type and cotype is also included. The obtained results complement, unify and generalize several...

Currently displaying 601 – 620 of 4028