Compact imbedding of weighted Sobolev space defined on an unbounded domain. II.
We investigate compact operators between approximation spaces, paying special attention to the limit case. Applications are given to embeddings between Besov spaces.
A small perturbation method is developed and employed to construct frames with compactly supported elements of small shrinking support for Besov and Triebel-Lizorkin spaces in the general setting of a doubling metric measure space in the presence of a nonnegative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. This allows one, in particular, to construct compactly supported frames for Besov and Triebel-Lizorkin spaces on the sphere, on the interval with...
The classical criterion for compactness in Banach spaces of functions can be reformulated into a simple tightness condition in the time-frequency domain. This description preserves more explicitly the symmetry between time and frequency than the classical conditions. The result is first stated and proved for , and then generalized to coorbit spaces. As special cases, we obtain new characterizations of compactness in Besov-Triebel-Lizorkin, modulation and Bargmann-Fock spaces.
In this note we present a result on compactness in certain Banach spaces of vector valued functions. We demonstrate an application of this result to the questions of existence of solutions of nonlinear differential inclusions on a Banach space.
We study compactness and related topological properties in the space L¹(m) of a Banach space valued measure m when the natural topologies associated to convergence of vector valued integrals are considered. The resulting topological spaces are shown to be angelic and the relationship of compactness and equi-integrability is explored. A natural norming subset of the dual unit ball of L¹(m) appears in our discussion and we study when it is a boundary. The (almost) complete continuity of the integration...
For a polish space M and a Banach space E let B1 (M, E) be the space of first Baire class functions from M to E, endowed with the pointwise weak topology. We study the compact subsets of B1 (M, E) and show that the fundamental results proved by Rosenthal, Bourgain, Fremlin, Talagrand and Godefroy, in case E = R, also hold true in the general case. For instance: a subset of B1 (M, E) is compact iff it is sequentially (resp. countably) compact, the convex hull of a compact bounded subset of B1 (M,...
We characterize compact composition operators acting on weighted Bergman-Orlicz spaces , where α > -1 and ψ is a strictly increasing, subadditive convex function defined on [0,∞) and satisfying ψ(0) = 0, the growth condition and the Δ₂-condition. In fact, we prove that is compact on if and only if it is compact on the weighted Bergman space .
We consider a generalized Hardy operator . For T to be bounded from a weighted Banach function space (X,v) into another, (Y,w), it is always necessary that the Muckenhoupt-type condition be satisfied. We say that (X,Y) belongs to the category M(T) if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when (X,Y) ∈ M(T) and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize...
We find necessary and sufficient conditions on a pair of rearrangement-invariant norms, ϱ and σ, in order that the Sobolev space be compactly imbedded into the rearrangement-invariant space , where Ω is a bounded domain in ℝⁿ with Lipschitz boundary and 1 ≤ m ≤ n-1. In particular, we establish the equivalence of the compactness of the Sobolev imbedding with the compactness of a certain Hardy operator from into . The results are illustrated with examples in which ϱ and σ are both Orlicz norms...