Description of weakly additive order-preserving functionals on the plane.
We study the extremal structure of Banach spaces of continuous functions with the diameter norm.
Under some mild assumptions, non-linear diameter-preserving bijections between (vector-valued) function spaces are characterized with the help of a well-known theorem of Ulam and Mazur. A necessary and sufficient condition for the existence of a diameter-preserving bijection between function spaces in the complex scalar case is derived, and a complete description of such maps is given in several important cases.
Assume that L p,q, are Lorentz spaces. This article studies the question: what is the size of the set . We prove the following dichotomy: either or E is σ-porous in , provided 1/p ≠ 1/p 1 + … + 1/p n. In general case we obtain that either or E is meager. This is a generalization of the results for classical L p spaces.
A bounded linear operator between Banach spaces is called a Dieudonné operator ( = weakly completely continuous operator) if it maps weakly Cauchy sequences to weakly convergent sequences. Let (Ω,Σ,μ) be a finite measure space, and let X and Y be Banach spaces. We study Dieudonné operators T: L¹(X) → Y. Let stand for the canonical injection. We show that if X is almost reflexive and T: L¹(X) → Y is a Dieudonné operator, then is a weakly compact operator. Moreover, we obtain that if T: L¹(X)...
In the geometries of stratified groups, we provide differentiability theorems for both functions of bounded variation and Sobolev functions. Proofs are based on a systematic application of the Sobolev-Poincaré inequality and the so-called representation formula.