Lindelöf theorems for monotone Sobolev functions.
It is proved that if X is infinite-dimensional, then there exists an infinite-dimensional space of X-valued measures which have infinite variation on sets of positive Lebesgue measure. In term of spaceability, it is also shown that , the measures with non-σ-finite variation, contains a closed subspace. Other considerations concern the space of vector measures whose range is neither closed nor convex. All of those results extend in some sense theorems of Muñoz Fernández et al. [Linear Algebra Appl....
Let U be an open subset of a separable Banach space. Let ℱ be the collection of all holomorphic mappings f from the open unit disc 𝔻 ⊂ ℂ into U such that f(𝔻) is dense in U. We prove the lineability and density of ℱ in appropriate spaces for different choices of U.
Representation of bounded and compact linear operators in the Banach space of regulated functions is given in terms of Perron-Stieltjes integral.
We study linear operators from a non-locally convex Orlicz space to a Banach space . Recall that a linear operator is said to be σ-smooth whenever in implies . It is shown that every σ-smooth operator factors through the inclusion map , where Φ̅ denotes the convex minorant of Φ. We obtain the Bochner integral representation of σ-smooth operators . This extends some earlier results of J. J. Uhl concerning the Bochner integral representation of linear operators defined on a locally convex...
It is shown that if E is a Frechet space with the strong dual E* then Hb(E*), the space of holomorphic functions on E* which are bounded on every bounded set in E*, has the property (DN) when E ∈ (DN) and that Hb(E*) ∈ (Ω) when E ∈ (Ω) and either E* has an absolute basis or E is a Hilbert-Frechet-Montel space. Moreover the complementness of ideals J(V) consisting of holomorphic functions on E* which are equal to 0 on V in H(E*) for every nuclear Frechet space E with E ∈ (DN) ∩ (Ω) is stablished...
Linear topological properties of the Lumer-Smirnov class of the unit polydisc are studied. The topological dual and the Fréchet envelope are described. It is proved that has a weak basis but it is nonseparable in its original topology. Moreover, it is shown that the Orlicz-Pettis theorem fails for .
This paper is devoted to several questions concerning linearizations of function spaces. We first consider the relation between linearizations of a given space when it is viewed as a function space over different domains. Then we study the problem of characterizing when a Banach function space admits a Banach linearization in a natural way. Finally, we consider the relevance of compactness properties in linearizations, more precisely, the relation between different compactness properties of a mapping,...
We present, discuss and apply two reiteration theorems for triples of quasi-Banach function lattices. Some interpolation results for block-Lorentz spaces and triples of weighted -spaces are proved. By using these results and a wavelet theory approach we calculate (θ,q)-spaces for triples of smooth function spaces (such as Besov spaces, Sobolev spaces, etc.). In contrast to the case of couples, for which even the scale of Besov spaces is not stable under interpolation, for triples we obtain stability...