A characterization of sets of functions and distributions on described by constraints on the gradient.
Page 1 Next
Corbo Esposito, Antonio, De Arcangelis, Ricardo (1996)
Journal of Convex Analysis
Deeba, E.Y., Koh, E.L. (1992)
International Journal of Mathematics and Mathematical Sciences
S. Pilipović (1982)
Matematički Vesnik
M.A. Dostal (1971)
Mathematische Annalen
Hans-Jürgen, Heß, Albrecht Glaeske (1986)
Mathematische Zeitschrift
Kelly McKennon (1979)
Czechoslovak Mathematical Journal
Michael Langenbruch (2003)
RACSAM
We show that Whitney?s approximation theorem holds in a general setting including spaces of (ultra)differentiable functions and ultradistributions. This is used to obtain real analytic modifications for differentiable functions including optimal estimates. Finally, a surjectivity criterion for continuous linear operators between Fréchet sheaves is deduced, which can be applied to the boundary value problem for holomorphic functions and to convolution operators in spaces of ultradifferentiable functions...
Rao, G.L.N., Debnath, L. (1985)
International Journal of Mathematics and Mathematical Sciences
Biagio Ricceri (1999)
Colloquium Mathematicae
We point out the following fact: if Ω ⊂ is a bounded open set, δ>0, and p>1, then , where
T. Bałaban, K. Gawędzki (1982)
Annales de l'I.H.P. Physique théorique
Jan Krzysztof Kowalski (1984)
Banach Center Publications
Antoine Delcroix (2008)
Publications de l'Institut Mathématique
Hoskins, R.F., Sousa Pinto, J. (1991)
Portugaliae mathematica
Grosser, Michael (2008)
Novi Sad Journal of Mathematics
Pérez Esteva, Salvador (1990)
International Journal of Mathematics and Mathematical Sciences
D. Mitrović (1971)
Matematički Vesnik
Bosch, Carlos, Kučera, Jan (1988)
International Journal of Mathematics and Mathematical Sciences
S. Pilipović (1981)
Matematički Vesnik
Jordi Juan-Huguet (2012)
Studia Mathematica
Let P be a hypoelliptic polynomial. We consider classes of ultradifferentiable functions with respect to the iterates of the partial differential operator P(D) and prove that such classes satisfy a Paley-Wiener type theorem. These classes and the corresponding test spaces are nuclear.
Ronald Coifman (1974)
Studia Mathematica
Page 1 Next