Periodic Silva tempered ultradistributions
The weighted inductive limit of Fréchet spaces of entire functions in N variables which is obtained as the Fourier-Laplace transform of the space of analytic functionals on an open convex subset of can be described algebraically as the intersection of a family of weighted Banach spaces of entire functions. The corresponding result for the spaces of quasianalytic functionals is also derived.
We introduce pseudodifferential operators (of infinite order) in the framework of non-quasianalytic classes of Beurling type. We prove that such an operator with (distributional) kernel in a given Beurling class is pseudo-local and can be locally decomposed, modulo a smoothing operator, as the composition of a pseudodifferential operator of finite order and an ultradifferential operator with constant coefficients in the sense of Komatsu, both operators with kernel in the same class . We also...