A theorem on kernel in the theory of operator-valued distributions
Algebras of ultradifferentiable generalized functions satisfying some regularity assumptions are introduced. We give a microlocal analysis within these algebras related to the affine regularity type and the ultradifferentiability property. As a particular case we obtain new algebras of Gevrey generalized functions.
For potentials , where and are certain Schwartz distributions, an inversion formula for is derived. Convolutions and Fourier transforms of distributions in -spaces are used. It is shown that the equilibrium distribution with respect to the Riesz kernel of order , , of a compact subset of has the following property: its restriction to the interior of is an absolutely continuous measure with analytic density which is expressed by an explicit formula.