Distributional boundary values in . V
We provide several general versions of Littlewood's Tauberian theorem. These versions are applicable to Laplace transforms of Schwartz distributions. We employ two types of Tauberian hypotheses; the first kind involves distributional boundedness, while the second type imposes a one-sided assumption on the Cesàro behavior of the distribution. We apply these Tauberian results to deduce a number of Tauberian theorems for power series and Stieltjes integrals where Cesàro summability follows from Abel...
On étudie en détail une décomposition microlocale analytique de la distribution suivant des distributions singulières en un seul point et dans une seule codirection. Cette décomposition est obtenue à partir d’opérateurs Fourier-Intégraux à phases complexes.On utilise ensuite cet outil pour démontrer le théorème de décomposition du front d’onde analytique des distributions. On établit également des théorèmes concernant la représentation globale des distributions comme sommes de valeurs au bord...
Several representations of the space of Laplace ultradistributions supported by a half line are given. A strong version of the quasi-analyticity principle of Phragmén-Lindelöf type is derived.
A family of formal solutions of some type of nonlinear partial differential equations is found. Terms of such solutions are Laplace transforms of some Laplace distributions. The series of these distributions are locally finite.
We give a sufficient condition for a hermitian holomorphic vector bundle over the disk to be quasi-isometric to the trivial bundle. One consequence is a version of Cartan's lemma on the factorization of matrices with uniform bounds.