Displaying 41 – 60 of 132

Showing per page

A note on Alexander's theorem.

Le Mau Hai, Nguyen Van Khue, Sičiak, Józef (2005)

Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica

A note on almost strong liftings

C. Ionescu-Tulcea, R. Maher (1971)

Annales de l'institut Fourier

Let X be a locally compact space. A lifting ρ of M R ( X , μ ) where μ is a positive measure on X , is almost strong if for each bounded, continuous function f , ρ ( f ) and f coincide locally almost everywhere. We prove here that the set of all measures μ on X such that there exists an almost strong lifting of M R ( X , | μ | ) is a band.

A note on copies of c 0 in spaces of weak* measurable functions

Juan Carlos Ferrando (2000)

Commentationes Mathematicae Universitatis Carolinae

If ( Ω , Σ , μ ) is a finite measure space and X a Banach space, in this note we show that L w * 1 ( μ , X * ) , the Banach space of all classes of weak* equivalent X * -valued weak* measurable functions f defined on Ω such that f ( ω ) g ( ω ) a.e. for some g L 1 ( μ ) equipped with its usual norm, contains a copy of c 0 if and only if X * contains a copy of c 0 .

A Note on Differentiability of Lipschitz Maps

Rafał Górak (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

We show that every Lipschitz map defined on an open subset of the Banach space C(K), where K is a scattered compactum, with values in a Banach space with the Radon-Nikodym property, has a point of Fréchet differentiability. This is a strengthening of the result of Lindenstrauss and Preiss who proved that for countable compacta. As a consequence of the above and a result of Arvanitakis we prove that Lipschitz functions on certain function spaces are Gâteaux differentiable.

A note on intermediate differentiability of Lipschitz functions

Luděk Zajíček (1999)

Commentationes Mathematicae Universitatis Carolinae

Let f be a Lipschitz function on a superreflexive Banach space X . We prove that then the set of points of X at which f has no intermediate derivative is not only a first category set (which was proved by M. Fabian and D. Preiss for much more general spaces X ), but it is even σ -porous in a rather strong sense. In fact, we prove the result even for a stronger notion of uniform intermediate derivative which was defined by J.R. Giles and S. Sciffer.

A note on the construction of measures taking their values in a Banach space with basis.

María Congost Iglesias (1983)

Stochastica

If E is a Banach space with a basis {en}, n belonging to N, a vector measure m: a --> E determines a sequence {mn}, n belonging to N, of scalar measures on a named its components. We obtain necessary and sufficient conditions to ensure that when given a sequence of scalar measures it is possible to construct a vector valued measure whose components were those given. Furthermore we study some relations between the variation of the measure m and the variation of its components.

A one-sided version of Alexiewicz-Orlicz's differentiability theorem.

E. Corbacho, A. Plichko, V. Tarieladze (2005)

RACSAM

Modificando adecuadamente el método de un trabajo olvidado [1], probamos que si una aplicación continua, de un subconjunto abierto no vacío U de un espacio vectorial topológico metrizable separable y de Baire E, en un espacio localmente convexo, es direccionalmente diferenciable por la derecha en U según un subconjunto comagro de E, entonces, es genéricamente Gâteaux diferenciable en U. Nuestro resultado implica que cualquier espacio vectorial topológico, metrizable, separable y de Baire, es débilmente...

A Pettis-type integral and applications to transition semigroups

Markus Kunze (2011)

Czechoslovak Mathematical Journal

Motivated by applications to transition semigroups, we introduce the notion of a norming dual pair and study a Pettis-type integral on such pairs. In particular, we establish a sufficient condition for integrability. We also introduce and study a class of semigroups on such dual pairs which are an abstract version of transition semigroups. Using our results, we give conditions ensuring that a semigroup consisting of kernel operators has a Laplace transform which also consists of kernel operators....

Currently displaying 41 – 60 of 132