Displaying 81 – 100 of 1085

Showing per page

An alternative polynomial Daugavet property

Elisa R. Santos (2014)

Studia Mathematica

We introduce a weaker version of the polynomial Daugavet property: a Banach space X has the alternative polynomial Daugavet property (APDP) if every weakly compact polynomial P: X → X satisfies m a x ω | | I d + ω P | | = 1 + | | P | | . We study the stability of the APDP by c₀-, - and ℓ₁-sums of Banach spaces. As a consequence, we obtain examples of Banach spaces with the APDP, namely L ( μ , X ) and C(K,X), where X has the APDP.

An extension of Mazur's theorem on Gateaux differentiability to the class of strongly α (·)-paraconvex functions

S. Rolewicz (2006)

Studia Mathematica

Let (X,||·||) be a separable real Banach space. Let f be a real-valued strongly α(·)-paraconvex function defined on an open convex subset Ω ⊂ X, i.e. such that f ( t x + ( 1 - t ) y ) t f ( x ) + ( 1 - t ) f ( y ) + m i n [ t , ( 1 - t ) ] α ( | | x - y | | ) . Then there is a dense G δ -set A G Ω such that f is Gateaux differentiable at every point of A G .

An intrinsic definition of the Colombeau generalized functions

Jiří Jelínek (1999)

Commentationes Mathematicae Universitatis Carolinae

A slight modification of the definition of the Colombeau generalized functions allows to have a canonical embedding of the space of the distributions into the space of the generalized functions on a 𝒞 manifold. The previous attempt in [5] is corrected, several equivalent definitions are presented.

Currently displaying 81 – 100 of 1085