Page 1

Displaying 1 – 8 of 8

Showing per page

Linear maps preserving the generalized spectrum.

Mostafa Mbekhta (2007)

Extracta Mathematicae

Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For an operator T in B(H), let σg(T) denote the generalized spectrum of T. In this paper, we prove that if φ: B(H) → B(H) is a surjective linear map, then φ preserves the generalized spectrum (i.e. σg(φ(T)) = σg(T) for every T ∈ B(H)) if and only if there is A ∈ B(H) invertible such that either φ(T) = ATA-1 for every T ∈ B(H), or φ(T) = ATtrA-1 for every T ∈ B(H). Also, we...

Locally m-pseudoconvex topologies on locally A-pseudoconvex algebras

M. Abel, J. Arhippainen (2004)

Czechoslovak Mathematical Journal

Let ( A , T ) be a locally A-pseudoconvex algebra over or . We define a new topology m ( T ) on A which is the weakest among all m-pseudoconvex topologies on A stronger than T . We describe a family of non-homogeneous seminorms on A which defines the topology m ( T ) .

Currently displaying 1 – 8 of 8

Page 1