Tensor products of topological algebras and analytic sets
It is a famous conjecture that every derivation on each Banach algebra leaves every primitive ideal of the algebra invariant. This conjecture is known to be true if, in addition, the derivation is assumed to be continuous. It is also known to be true if the algebra is commutative, in which case the derivation necessarily maps into the (Jacobson) radical. Because I. M. Singer and J. Wermer originally raised the question in 1955 for the case of commutative Banach algebras, the conjecture is...
It is shown that every unital σ-complete topologically primitive strongly galbed Hausdorff algebra in which all elements are bounded is central
In this paper we consider a subset  of a Banach algebra A (containing all elements of A which have a generalized inverse) and characterize membership in the closure of the invertibles for the elements of Â. Thus our result yields a characterization of the closure of the invertible group for all those Banach algebras A which satisfy  = A. In particular, we prove that  = A when A is a von Neumann algebra. We also derive from our characterization new proofs of previously known results, namely Feldman...
This expository article deals with results surrounding the following question: Which pairs of Banach algebras A and B have the property that every unital invertibility preserving linear map from A to B is a Jordan homomorphism?
We show that the existence of a trace on an ideal in a Banach algebra provides an elegant way to develop the abstract index theory of Fredholm elements in the algebra. We prove some results on the problem of the equality of the nonzero exponential spectra of elements ab and ba and use the index theory to formulate a condition guaranteeing this equality in a quotient algebra.
We show that the index defined via a trace for Fredholm elements in a Banach algebra has the property that an index zero Fredholm element can be decomposed as the sum of an invertible element and an element in the socle. We identify the set of index zero Fredholm elements as an upper semiregularity with the Jacobson property. The Weyl spectrum is then characterized in terms of the index.
A simple application of Pták theory for hermitian Banach algebras, combined with a result on normed Q-algebras, gives a non-technical new proof of the Shirali-Ford theorem. A version of this theorem in the setting of non-normed topological algebras is also provided.
We prove that a locally convex algebra A with jointly continuous multiplication is already locally-m-convex, if A contains a two-sided ideal I such that both I and the quotient algebra A/I are locally-m-convex. An application to the behaviour of the associated locally-m-convex topology on ideals is given.