Page 1

Displaying 1 – 8 of 8

Showing per page

Géométrie du spectre dans une algèbre de Banach et domaine numérique

Mohamed Chraibi Kaadoud (2004)

Studia Mathematica

Dans une algèbre de Banach et dans deux cas particuliers, nous montrons la continuité du centre du plus petit disque contenant le spectre. Pour a ∈ , on donne une condition nécessaire et suffisante pour avoir R K = d ( a ) où d(a) est la distance de a aux scalaires et R K le rayon du plus petit disque contenant K qui représente le spectre ou le domaine numérique algébrique de a. Dans un espace de Hilbert complexe, K peut représenter certains types de spectres ou de domaines numériques de a.

Geometry of the spectral semidistance in Banach algebras

Gareth Braatvedt, Rudi Brits (2014)

Czechoslovak Mathematical Journal

Let A be a unital Banach algebra over , and suppose that the nonzero spectral values of a and b A are discrete sets which cluster at 0 , if anywhere. We develop a plane geometric formula for the spectral semidistance of a and b which depends on the two spectra, and the orthogonality relationships between the corresponding sets of Riesz projections associated with the nonzero spectral values. Extending a result of Brits and Raubenheimer, we further show that a and b are quasinilpotent equivalent if...

Currently displaying 1 – 8 of 8

Page 1