Minimal incomplete norms on Banach algebras
We study the family of all not necessarily complete algebra norms on a semisimple Banach algebra as a partially ordered set and investigate the existence and properties of minimal elements.
We study the family of all not necessarily complete algebra norms on a semisimple Banach algebra as a partially ordered set and investigate the existence and properties of minimal elements.
We study locally compact quantum groups and their module maps through a general Banach algebra approach. As applications, we obtain various characterizations of compactness and discreteness, which in particular generalize a result by Lau (1978) and recover another one by Runde (2008). Properties of module maps on are used to characterize strong Arens irregularity of L₁() and are linked to commutation relations over with several double commutant theorems established. We prove the quantum group...
Let A be a complex Banach algebra with a unit e, let T, φ be continuous functionals, where T is linear, and let F be a nonlinear entire function. If T ∘ F = F ∘ φ and T(e) = 1 then T is multiplicative.
Let A be a complex Banach algebra with a unit e, let F be a nonconstant entire function, and let T be a linear functional with T(e)=1 and such that T∘F: A → ℂ is nonsurjective. Then T is multiplicative.