Previous Page 4

Displaying 61 – 80 of 80

Showing per page

Continuity of the Drazin inverse II

J. Koliha, V. Rakočević (1998)

Studia Mathematica

We study the continuity of the generalized Drazin inverse for elements of Banach algebras and bounded linear operators on Banach spaces. This work extends the results obtained by the second author on the conventional Drazin inverse.

Contractible quantum Arens-Michael algebras

Nina V. Volosova (2010)

Banach Center Publications

We consider quantum analogues of locally convex spaces in terms of the non-coordinate approach. We introduce the notions of a quantum Arens-Michael algebra and a quantum polynormed module, and also quantum versions of projectivity and contractibility. We prove that a quantum Arens-Michael algebra is contractible if and only if it is completely isomorphic to a Cartesian product of full matrix C*-algebras. Similar results in the framework of traditional (non-quantum) approach are established, at the...

Contribuciones al análisis funcional no-standard.

José Luis Rubio de Francia (1981)

Revista Matemática Hispanoamericana

En este trabajo presentamos aportaciones al tratamiento no-standard del Análisis Funcional en dos direcciones. En la sección 2 la envoltura no-standard de un espacio vectorial topológico, introducida por Luxemburg [7] y por Henson y Moore [2] se aplica al caso de un álgebra topológica. En las secciones 3 y 4 se dan caracterizaciones de elementos accesibles (pre-near-standard) y casi-standard (near-standard) en espacios vectoriales topológicos en términos de una familia filtrante densa de subespacios...

Convergence in the generalized sense relative to Banach algebras of operators and in LMC-algebras

Bruce Barnes (1995)

Studia Mathematica

The notion of convergence in the generalized sense of a sequence of closed operators is generalized to the situation where the closed operators involved are affiliated with a Banach algebra of operators. Also, the concept of convergence in the generalized sense is extended to the context of a LMC-algebra, where it applies to the spectral theory of the algebra.

Convexity around the Unit of a Banach Algebra

Kadets, Vladimir, Katkova, Olga, Martín, Miguel, Vishnyakova, Anna (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary: 46B20. Secondary: 46H99, 47A12.We estimate the (midpoint) modulus of convexity at the unit 1 of a Banach algebra A showing that inf {max±||1 ± x|| − 1 : x ∈ A, ||x||=ε} ≥ (π/4e)ε²+o(ε²) as ε → 0. We also give a characterization of two-dimensional subspaces of Banach algebras containing the identity in terms of polynomial inequalities.

Crossed products by Hilbert pro-C*-bimodules

Maria Joiţa, Ioannis Zarakas (2013)

Studia Mathematica

We define the crossed product of a pro-C*-algebra A by a Hilbert A-A pro-C*-bimodule and we show that it can be realized as an inverse limit of crossed products of C*-algebras by Hilbert C*-bimodules. We also prove that under some conditions the crossed products of two Hilbert pro-C*-bimodules over strongly Morita equivalent pro-C*-algebras are strongly Morita equivalent.

Cyclic cohomology of certain nuclear Fréchet algebras and DF algebras

Zinaida Lykova (2008)

Open Mathematics

We give explicit formulae for the continuous Hochschild and cyclic homology and cohomology of certain ^ -algebras. We use well-developed homological techniques together with some niceties of the theory of locally convex spaces to generalize the results known in the case of Banach algebras and their inverse limits to wider classes of topological algebras. To this end we show that, for a continuous morphism ϕ: x → y of complexes of complete nuclear DF-spaces, the isomorphism of cohomology groups H...

Currently displaying 61 – 80 of 80

Previous Page 4