Loading [MathJax]/extensions/MathZoom.js
Displaying 121 –
140 of
939
An infinite dimensional extension of the Pick-Julia theorem is used to derive the conditions of Carathéodory type which guarantee the existence of angular limits and angular derivatives for holomorphic maps of infinite dimensional bounded symmetric homogeneous domains in -algebras and in complex Hilbert spaces. The case of operator-valued analytic maps is considered and examples are given.
We apply Aupetit's scarcity theorem to obtain stronger versions of many spectral-theoretical results in ordered Banach algebras in which the algebra cone has generating properties.
The problem of when derivations (and their powers) have the range in the Jacobson radical is considered. The proofs are based on the density theorem for derivations.
We consider when certain Banach sequence algebras A on the set ℕ are approximately amenable. Some general results are obtained, and we resolve the special cases where for 1 ≤ p < ∞, showing that these algebras are not approximately amenable. The same result holds for the weighted algebras .
The notions of approximate amenability and weak amenability in Banach algebras are formally stronger than that of approximate weak amenability. We demonstrate an example confirming that approximate weak amenability is indeed actually weaker than either approximate or weak amenability themselves. As a consequence, we examine the (failure of) approximate amenability for -sums of finite-dimensional normed algebras.
We study the structure of Lipschitz algebras under the notions of approximate biflatness and Johnson pseudo-contractibility. We show that for a compact metric space , the Lipschitz algebras and are approximately biflat if and only if is finite, provided that . We give a necessary and sufficient condition that a vector-valued Lipschitz algebras is Johnson pseudo-contractible. We also show that some triangular Banach algebras are not approximately biflat.
We continue our study of derivations, multipliers, weak amenability and Arens regularity of Segal algebras on locally compact groups. We also answer two questions on Arens regularity of the Lebesgue-Fourier algebra left open in our earlier work.
We study the Arens regularity of module actions of Banach left or right modules over Banach algebras. We prove that if has a brai (blai), then the right (left) module action of on * is Arens regular if and only if is reflexive. We find that Arens regularity is implied by the factorization of * or ** when is a left or a right ideal in **. The Arens regularity and strong irregularity of are related to those of the module actions of on the nth dual of . Banach algebras for which Z( **) = but are...
Currently displaying 121 –
140 of
939