Page 1

Displaying 1 – 9 of 9

Showing per page

Fréchet algebras and formal power series

Graham Allan (1996)

Studia Mathematica

The class of elements of locally finite closed descent in a commutative Fréchet algebra is introduced. Using this notion, those commutative Fréchet algebras in which the algebra ℂ[[X]] may be embedded are completely characterized, and some applications to the theory of automatic continuity are given.

Fréchet algebras, formal power series, and automatic continuity

S. R. Patel (2008)

Studia Mathematica

We describe all those commutative Fréchet algebras which may be continuously embedded in the algebra ℂ[[X]] in such a way that they contain the polynomials. It is shown that these algebras (except ℂ[[X]] itself) always satisfy a certain equicontinuity condition due to Loy. Using this result, some applications to the theory of automatic continuity are given; in particular, the uniqueness of the Fréchet algebra topology for such algebras is established.

Fredholm multipliers of semisimple commutative Banach algebras.

Pietro Aiena (1991)

Extracta Mathematicae

In some recent papers ([1],[2],[3],[4]) we have investigated some general spectral properties of a multiplier defined on a commutative semi-simple Banach algebra. In this paper we expose some aspects concerning the Fredholm theory of multipliers.

Functionals on Banach Algebras with Scattered Spectra

H. S. Mustafayev (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Let A be a complex, commutative Banach algebra and let M A be the structure space of A. Assume that there exists a continuous homomorphism h:L¹(G) → A with dense range, where L¹(G) is a group algebra of the locally compact abelian group G. The main results of this note can be summarized as follows: (a) If every weakly almost periodic functional on A with compact spectra is almost periodic, then the space M A is scattered (i.e., M A has no nonempty perfect subset). (b) Weakly almost periodic functionals...

Currently displaying 1 – 9 of 9

Page 1