Page 1

Displaying 1 – 7 of 7

Showing per page

Un problème d'extension linéaire dans les algèbres uniformes

Nicolas Th. Varopoulos (1971)

Annales de l'institut Fourier

Soit A une algèbre uniforme et soit I un idéal fermé de A tel que A / I soit une algèbre isométriquement isomorphe à C ( X ) , il existe alors une sous-algèbre fermée B A telle que A est isométriquement isomorphe à I B .

Uniform spectral radius and compact Gelfand transform

Alexandru Aleman, Anders Dahlner (2006)

Studia Mathematica

We consider the quantization of inversion in commutative p-normed quasi-Banach algebras with unit. The standard questions considered for such an algebra A with unit e and Gelfand transform x ↦ x̂ are: (i) Is K ν = s u p | | ( e - x ) - 1 | | p : x A , | | x | | p 1 , m a x | x ̂ | ν bounded, where ν ∈ (0,1)? (ii) For which δ ∈ (0,1) is C δ = s u p | | x - 1 | | p : x A , | | x | | p 1 , m i n | x ̂ | δ bounded? Both questions are related to a “uniform spectral radius” of the algebra, r ( A ) , introduced by Björk. Question (i) has an affirmative answer if and only if r ( A ) < 1 , and this result is extended to more general nonlinear extremal problems...

Unital strongly harmonic commutative Banach algebras

Janko Bračič (2002)

Studia Mathematica

A unital commutative Banach algebra is spectrally separable if for any two distinct non-zero multiplicative linear functionals φ and ψ on it there exist a and b in such that ab = 0 and φ(a)ψ(b) ≠ 0. Spectrally separable algebras are a special subclass of strongly harmonic algebras. We prove that a unital commutative Banach algebra is spectrally separable if there are enough elements in such that the corresponding multiplication operators on have the decomposition property (δ). On the other hand,...

Currently displaying 1 – 7 of 7

Page 1