Über die Primideale differenzierbarer und integrierbarer Funktionen.
Soit une algèbre uniforme et soit un idéal fermé de tel que soit une algèbre isométriquement isomorphe à , il existe alors une sous-algèbre fermée telle que est isométriquement isomorphe à .
We consider the quantization of inversion in commutative p-normed quasi-Banach algebras with unit. The standard questions considered for such an algebra A with unit e and Gelfand transform x ↦ x̂ are: (i) Is bounded, where ν ∈ (0,1)? (ii) For which δ ∈ (0,1) is bounded? Both questions are related to a “uniform spectral radius” of the algebra, , introduced by Björk. Question (i) has an affirmative answer if and only if , and this result is extended to more general nonlinear extremal problems...
A unital commutative Banach algebra is spectrally separable if for any two distinct non-zero multiplicative linear functionals φ and ψ on it there exist a and b in such that ab = 0 and φ(a)ψ(b) ≠ 0. Spectrally separable algebras are a special subclass of strongly harmonic algebras. We prove that a unital commutative Banach algebra is spectrally separable if there are enough elements in such that the corresponding multiplication operators on have the decomposition property (δ). On the other hand,...