On the Cartan-Thullen Theorem for some subalgebras of holomorphic functions in a locally convex space.
We consider the Fejér (or first arithmetic) means of double Fourier series of functions belonging to one of the Hardy spaces , , or . We prove that the maximal Fejér operator is bounded from or into weak-, and also bounded from into . These results extend those by Jessen, Marcinkiewicz, and Zygmund, which involve the function spaces , , and with 0 < μ < 1, respectively. We establish analogous results for the maximal conjugate Fejér operators. On closing, we formulate two conjectures....
We study some properties of the maximal ideal space of the bounded holomorphic functions in several variables. Two examples of bounded balanced domains are introduced, both having non-trivial maximal ideals.
In this paper we prove a general result for the ring H(U) of the analytic functions on an open set U in the complex plane which implies that H(U) has not unit-1-stable rank and that has some other interesting consequences. We prove also that in H(U) there are no totally reducible elements different from the zero function.
We identify the intermediate space of a complex interpolation family -in the sense of Coifman, Cwikel, Rochberg, Sagher and Weiss- of Lp spaces with change of measure, for the complex interpolation method associated to any analytic functional.
Measures on the unit circle are well studied from the view of Fourier analysis. In this paper, we investigate measures from the view of Poisson integrals and of divisibility of singular inner functions in H∞ + C. Especially, we study singular measures which have outer and inner vanishing measures. It is given two decompositions of a singular positive measure. As applications, it is studied division theorems in H∞ + C.
We continue our study of outer elements of the noncommutative spaces associated with Arveson’s subdiagonal algebras. We extend our generalized inner-outer factorization theorem, and our characterization of outer elements, to include the case of elements with zero determinant. In addition, we make several further contributions to the theory of outers. For example, we generalize the classical fact that outers in actually satisfy the stronger condition that there exist aₙ ∈ A with haₙ ∈ Ball(A)...