Analytic structure on locally compact spaces determined by algebras of continuous functions
We use the work of J. Bourgain to show that some uniform algebras of analytic functions have certain Banach space properties. If X is a Banach space, we say X is strongif X and X* have the Dunford-Pettis property, X has the Pełczyński property, and X* is weakly sequentially complete. Bourgain has shown that the ball-algebras and the polydisk-algebras are strong Banach spaces. Using Bourgain’s methods, Cima and Timoney have shown that if K is a compact planar set and A is R(K) or A(K), then A and...
On démontre un résultat de dichotomie pour les fonctions qui opèrent sur les restrictions d’algèbres de fonctions holomorphes de plusieurs variables. On obtient ce résultat après étude de la séparation par des fonctions holomorphes de compacts sur certaines hypersurfaces de .
Let μ and λ be bounded positive singular measures on the unit circle such that μ ⊥ λ. It is proved that there exist positive measures μ₀ and λ₀ such that μ₀ ∼ μ, λ₀ ∼ λ, and , where is the associated singular inner function of μ. Let be the common zeros of equivalent singular inner functions of . Then (μ) ≠ ∅ and (μ) ∩ (λ) = ∅. It follows that μ ≪ λ if and only if (μ) ⊂ (λ). Hence (μ) is the set in the maximal ideal space of which relates naturally to the set of measures equivalent to μ....
We study connected components of a common zero set of equivalent singular inner functions in the maximal ideal space of the Banach algebra of bounded analytic functions on the open unit disk. To study topological properties of zero sets of inner functions, we give a new type of factorization theorem for inner functions.