Displaying 41 – 60 of 174

Showing per page

C*-seminorms on partial *-algebras: an overview

Camillo Trapani (2005)

Banach Center Publications

The main facts about unbounded C*-seminorms on partial *-algebras are reviewed and the link with the representation theory is discussed. In particular, starting from the more familiar case of *-algebras, we examine C*-seminorms that are defined from suitable families of positive linear or sesquilinear forms, mimicking the construction of the Gelfand seminorm for Banach *-algebras. The admissibility of these forms in terms of the (unbounded) C*-seminorms they generate is characterized.

Decomposition and disintegration of positive definite kernels on convex *-semigroups

Jan Stochel (1992)

Annales Polonici Mathematici

The paper deals with operator-valued positive definite kernels on a convex *-semigroup whose Kolmogorov-Aronszajn type factorizations induce *-semigroups of bounded shift operators. Any such kernel Φ has a canonical decomposition into a degenerate and a nondegenerate part. In case is commutative, Φ can be disintegrated with respect to some tight positive operator-valued measure defined on the characters of if and only if Φ is nondegenerate. It is proved that a representing measure of a positive...

Discontinuity of the product in multiplier algebras.

Mohamed Oudadess (1990)

Publicacions Matemàtiques

Entire functions operate in complete locally A-convex algebras but not continuously. Actually squaring is not always continuous. The counterexample we give is multiplier algebra.

Fonctions harmoniques opérant sur les algèbres de Banach involutives

Abdellah Elkinani (1991)

Annales de l'institut Fourier

Nous introduisons un calcul fonctionnel pour les fonctions harmoniques sur un ouvert du plan complexe et à valeurs dans une algèbre de Banach à involution continue. Ensuite, nous donnons dans les algèbres hermitiennes deux extensions des théorèmes de von Neumann et de Ky Fan sur les contractions. Nous obtenons également les analogues du lemme de Schwarz et du théorème de Pick.

Full groups, flip conjugacy, and orbit equivalence of Cantor minimal systems

S. Bezuglyi, K. Medynets (2008)

Colloquium Mathematicae

We consider the full group [φ] and topological full group [[φ]] of a Cantor minimal system (X,φ). We prove that the commutator subgroups D([φ]) and D([[φ]]) are simple and show that the groups D([φ]) and D([[φ]]) completely determine the class of orbit equivalence and flip conjugacy of φ, respectively. These results improve the classification found in [GPS]. As a corollary of the technique used, we establish the fact that φ can be written as a product of three involutions from [φ].

Fully representable and *-semisimple topological partial *-algebras

J.-P. Antoine, G. Bellomonte, C. Trapani (2012)

Studia Mathematica

We continue our study of topological partial *-algebras, focusing our attention on *-semisimple partial *-algebras, that is, those that possess a multiplication core and sufficiently many *-representations. We discuss the respective roles of invariant positive sesquilinear (ips) forms and representable continuous linear functionals, and focus on the case where the two notions are completely interchangeable (fully representable partial *-algebras) with the aim of characterizing a *-semisimple partial...

Functional calculus in weighted group algebras.

Jacek Dziubanski, Jean Ludwig, Carine Molitor-Braun (2004)

Revista Matemática Complutense

Let G be a compactly generated, locally compact group with polynomial growth and let ω be a weight on G. We look for general conditions on the weight which allow us to develop a functional calculus on a total part of L1(G,ω). This functional calculus is then used to study harmonic analysis properties of L1(G,ω), such as the Wiener property and Domar's theorem.

Currently displaying 41 – 60 of 174