Page 1

Displaying 1 – 8 of 8

Showing per page

On completely bounded bimodule maps over W*-algebras

Bojan Magajna (2003)

Studia Mathematica

It is proved that for a von Neumann algebra A ⊆ B(ℋ ) the subspace of normal maps is dense in the space of all completely bounded A-bimodule homomorphisms of B(ℋ ) in the point norm topology if and only if the same holds for the corresponding unit balls, which is the case if and only if A is atomic with no central summands of type I , . Then a duality result for normal operator modules is presented and applied to the following problem. Given an operator space X and a von Neumann algebra A, is the map...

Open partial isometries and positivity in operator spaces

David P. Blecher, Matthew Neal (2007)

Studia Mathematica

We first study positivity in C*-modules using tripotents ( = partial isometries) which are what we call open. This is then used to study ordered operator spaces via an "ordered noncommutative Shilov boundary" which we introduce. This boundary satisfies the usual universal diagram/property of the noncommutative Shilov boundary, but with all the arrows completely positive. Because of their independent interest, we also systematically study open tripotents and their properties.

Open projections in operator algebras I: Comparison theory

David P. Blecher, Matthew Neal (2012)

Studia Mathematica

We begin a program of generalizing basic elements of the theory of comparison, equivalence, and subequivalence, of elements in C*-algebras, to the setting of more general algebras. In particular, we follow the recent lead of Lin, Ortega, Rørdam, and Thiel of studying these equivalences, etc., in terms of open projections or module isomorphisms. We also define and characterize a new class of inner ideals in operator algebras, and develop a matching theory of open partial isometries in operator ideals...

Open projections in operator algebras II: Compact projections

David P. Blecher, Matthew Neal (2012)

Studia Mathematica

We generalize some aspects of the theory of compact projections relative to a C*-algebra, to the setting of more general algebras. Our main result is that compact projections are the decreasing limits of 'peak projections', and in the separable case compact projections are just the peak projections. We also establish new forms of the noncommutative Urysohn lemma relative to an operator algebra, and we show that a projection is compact iff the associated face in the state space of the algebra is...

Operator Figà-Talamanca-Herz algebras

Volker Runde (2003)

Studia Mathematica

Let G be a locally compact group. We use the canonical operator space structure on the spaces L p ( G ) for p ∈ [1,∞] introduced by G. Pisier to define operator space analogues O A p ( G ) of the classical Figà-Talamanca-Herz algebras A p ( G ) . If p ∈ (1,∞) is arbitrary, then A p ( G ) O A p ( G ) and the inclusion is a contraction; if p = 2, then OA₂(G) ≅ A(G) as Banach spaces, but not necessarily as operator spaces. We show that O A p ( G ) is a completely contractive Banach algebra for each p ∈ (1,∞), and that O A q ( G ) O A p ( G ) completely contractively for amenable...

Operator Segal algebras in Fourier algebras

Brian E. Forrest, Nico Spronk, Peter J. Wood (2007)

Studia Mathematica

Let G be a locally compact group, A(G) its Fourier algebra and L¹(G) the space of Haar integrable functions on G. We study the Segal algebra S¹A(G) = A(G) ∩ L¹(G) in A(G). It admits an operator space structure which makes it a completely contractive Banach algebra. We compute the dual space of S¹A(G). We use it to show that the restriction operator u u | H : S ¹ A ( G ) A ( H ) , for some non-open closed subgroups H, is a surjective complete quotient map. We also show that if N is a non-compact closed subgroup, then the averaging...

Operator spaces which are one-sided M-ideals in their bidual

Sonia Sharma (2010)

Studia Mathematica

We generalize an important class of Banach spaces, the M-embedded Banach spaces, to the non-commutative setting of operator spaces. The one-sided M-embedded operator spaces are the operator spaces which are one-sided M-ideals in their second dual. We show that several properties from the classical setting, like the stability under taking subspaces and quotients, unique extension property, Radon-Nikodým property and many more, are retained in the non-commutative setting. We also discuss the dual...

Currently displaying 1 – 8 of 8

Page 1