Page 1

Displaying 1 – 2 of 2

Showing per page

Real Interpolation between Row and Column Spaces

Gilles Pisier (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

We give an equivalent expression for the K-functional associated to the pair of operator spaces (R,C) formed by the rows and columns respectively. This yields a description of the real interpolation spaces for the pair (Mₙ(R),Mₙ(C)) (uniformly over n). More generally, the same result is valid when Mₙ (or B(ℓ₂)) is replaced by any semi-finite von Neumann algebra. We prove a version of the non-commutative Khintchine inequalities (originally due to Lust-Piquard) that is valid for the Lorentz spaces...

Rosenthal operator spaces

M. Junge, N. J. Nielsen, T. Oikhberg (2008)

Studia Mathematica

In 1969 Lindenstrauss and Rosenthal showed that if a Banach space is isomorphic to a complemented subspace of an L p -space, then it is either an L p -space or isomorphic to a Hilbert space. This is the motivation of this paper where we study non-Hilbertian complemented operator subspaces of non-commutative L p -spaces and show that this class is much richer than in the commutative case. We investigate the local properties of some new classes of operator spaces for every 2 < p < ∞ which can be considered...

Currently displaying 1 – 2 of 2

Page 1