A fixed point approach to the stability of -morphisms on Hilbert -modules.
We introduce a notion of Morita equivalence for Hilbert C*-modules in terms of the Morita equivalence of the algebras of compact operators on Hilbert C*-modules. We investigate the properties of the new Morita equivalence. We apply our results to study continuous actions of locally compact groups on full Hilbert C*-modules. We also present an extension of Green's theorem in the context of Hilbert C*-modules.
The paper presents several combinatorial properties of the boolean cumulants. A consequence is a new proof of the multiplicative property of the boolean cumulant series that can be easily adapted to the case of boolean independence with amalgamation over an algebra.