Previous Page 3

Displaying 41 – 48 of 48

Showing per page

The simplex of tracial quantum symmetric states

Yoann Dabrowski, Kenneth J. Dykema, Kunal Mukherjee (2014)

Studia Mathematica

We show that the space of tracial quantum symmetric states of an arbitrary unital C*-algebra is a Choquet simplex and is a face of the tracial state space of the universal unital C*-algebra free product of A with itself infinitely many times. We also show that the extreme points of this simplex are dense, making it the Poulsen simplex when A is separable and nontrivial. In the course of the proof we characterize the centers of certain tracial amalgamated free product C*-algebras.

Currently displaying 41 – 48 of 48

Previous Page 3