Semiregular maximal abelian *-subalgebras and the solution to the factor state Stone-Weierstrass problem.
Soit une algèbre de von Neumann finie. Nous montrons que l’espace des sommes finies de commutateurs de coïncide avec le noyau de la trace centrale. Si est un facteur, il en résulte par exemple que tout élément est une combinaison linéaire finie de projecteurs de dimension . Nous montrons aussi dans ce cas que le groupe dérivé de coïncide avec le noyau du déterminant de Fuglede-Kadison.
Let (G,X) be a transformation group, where X is a locally compact Hausdorff space and G is a compact group. We investigate the stable rank and the real rank of the transformation group C*-algebra C₀(X)⋊ G. Explicit formulae are given in the case where X and G are second countable and X is locally of finite G-orbit type. As a consequence, we calculate the ranks of the group C*-algebra C*(ℝⁿ ⋊ G), where G is a connected closed subgroup of SO(n) acting on ℝⁿ by rotation.