Displaying 81 – 100 of 153

Showing per page

Non-trivial derivations on commutative regular algebras.

A. F. Ber, Vladimir I. Chilin, Fyodor A. Sukochev (2006)

Extracta Mathematicae

Necessary and sufficient conditions are given for a (complete) commutative algebra that is regular in the sense of von Neumann to have a non-zero derivation. In particular, it is shown that there exist non-zero derivations on the algebra L(M) of all measurable operators affiliated with a commutative von Neumann algebra M, whose Boolean algebra of projections is not atomic. Such derivations are not continuous with respect to measure convergence. In the classical setting of the algebra S[0,1] of all...

On 0 - 1 measure for projectors

Václav Alda (1980)

Aplikace matematiky

An example of a finite set of projectors in E 3 is exhibited for which no 0-1 measure exists.

On individual subsequential ergodic theorem in von Neumann algebras

Semyon Litvinov, Farrukh Mukhamedov (2001)

Studia Mathematica

We use a non-commutative generalization of the Banach Principle to show that the classical individual ergodic theorem for subsequences generated by means of uniform sequences can be extended to the von Neumann algebra setting.

On the Lebesgue decomposition of the normal states of a JBW-algebra

Jacques Dubois, Brahim Hadjou (1992)

Mathematica Bohemica

In this article, a theorem is proved asserting that any linear functional defined on a JBW-algebra admits a Lebesque decomposition with respect to any normal state defined on the algebra. Then we show that the positivity (and the unicity) of this decomposition is insured for the trace states defined on the algebra. In fact, this property can be used to give a new characterization of the trace states amoungst all the normal states.

Orlicz spaces associated with a semi-finite von Neumann algebra

Sh. A. Ayupov, V. I. Chilin, R. Z. Abdullaev (2012)

Commentationes Mathematicae Universitatis Carolinae

Let M be a von Neumann algebra, let ϕ be a weight on M and let Φ be N -function satisfying the ( δ 2 , Δ 2 ) -condition. In this paper we study Orlicz spaces, associated with M , ϕ and Φ .

Currently displaying 81 – 100 of 153