Page 1

Displaying 1 – 6 of 6

Showing per page

Noncommutative fractional integrals

Narcisse Randrianantoanina, Lian Wu (2015)

Studia Mathematica

Let ℳ be a hyperfinite finite von Nemann algebra and ( k ) k 1 be an increasing filtration of finite-dimensional von Neumann subalgebras of ℳ. We investigate abstract fractional integrals associated to the filtration ( k ) k 1 . For a finite noncommutative martingale x = ( x k ) 1 k n L ( ) adapted to ( k ) k 1 and 0 < α < 1, the fractional integral of x of order α is defined by setting I α x = k = 1 n ζ k α d x k for an appropriate sequence ( ζ k ) k 1 of scalars. For the case of a noncommutative dyadic martingale in L₁() where is the type II₁ hyperfinite factor equipped...

Noncommutative function theory and unique extensions

David P. Blecher, Louis E. Labuschagne (2007)

Studia Mathematica

We generalize, to the setting of Arveson’s maximal subdiagonal subalgebras of finite von Neumann algebras, the Szegő L p -distance estimate and classical theorems of F. and M. Riesz, Gleason and Whitney, and Kolmogorov. As a byproduct, this completes the noncommutative analog of the famous cycle of theorems characterizing the function algebraic generalizations of H from the 1960’s. A sample of our other results: we prove a Kaplansky density result for a large class of these algebras, and give a necessary...

Non-commutative martingale VMO-spaces

Narcisse Randrianantoanina (2009)

Studia Mathematica

We study Banach space properties of non-commutative martingale VMO-spaces associated with general von Neumann algebras. More precisely, we obtain a version of the classical Kadets-Pełczyński dichotomy theorem for subspaces of non-commutative martingale VMO-spaces. As application we prove that if ℳ is hyperfinite then the non-commutative martingale VMO-space associated with a filtration of finite-dimensional von Neumannn subalgebras of ℳ has property (u).

Noncommutative Poincaré recurrence theorem

Andrzej Łuczak (2001)

Colloquium Mathematicae

Poincaré’s classical recurrence theorem is generalised to the noncommutative setup where a measure space with a measure-preserving transformation is replaced by a von Neumann algebra with a weight and a Jordan morphism leaving the weight invariant. This is done by a suitable reformulation of the theorem in the language of L -space rather than the original measure space, thus allowing the replacement of the commutative von Neumann algebra L by a noncommutative one.

Noncommutative weak Orlicz spaces and martingale inequalities

Turdebek N. Bekjan, Zeqian Chen, Peide Liu, Yong Jiao (2011)

Studia Mathematica

This paper is devoted to the study of noncommutative weak Orlicz spaces and martingale inequalities. The Marcinkiewicz interpolation theorem is extended to include noncommutative weak Orlicz spaces as interpolation classes. As an application, we prove the weak type Φ-moment Burkholder-Gundy inequality for noncommutative martingales through establishing a weak type Φ-moment noncommutative Khinchin inequality for Rademacher random variables.

Currently displaying 1 – 6 of 6

Page 1