Page 1

Displaying 1 – 5 of 5

Showing per page

On the bundle convergence of double orthogonal series in noncommutative L 2 -spaces

Ferenc Móricz, Barthélemy Le Gac (2000)

Studia Mathematica

The notion of bundle convergence in von Neumann algebras and their L 2 -spaces for single (ordinary) sequences was introduced by Hensz, Jajte, and Paszkiewicz in 1996. Bundle convergence is stronger than almost sure convergence in von Neumann algebras. Our main result is the extension of the two-parameter Rademacher-Men’shov theorem from the classical commutative case to the noncommutative case. To our best knowledge, this is the first attempt to adopt the notion of bundle convergence to multiple series....

Optimal Constants in Khintchine Type Inequalities for Fermions, Rademachers and q-Gaussian Operators

Artur Buchholz (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

For ( P k ) being Rademacher, Fermion or q-Gaussian (-1 ≤ q ≤ 0) operators, we find the optimal constants C 2 n , n∈ ℕ, in the inequality k = 1 N A k P k 2 n [ C 2 n ] 1 / 2 n m a x ( k = 1 N A * k A k 1 / 2 L 2 n , ( k = 1 N A k A * k 1/2∥L2n , valid for all finite sequences of operators ( A k ) in the non-commutative L 2 n space related to a semifinite von Neumann algebra with trace. In particular, C 2 n = ( 2 n r - 1 ) ! ! for the Rademacher and Fermion sequences.

Order theory and interpolation in operator algebras

David P. Blecher, Charles John Read (2014)

Studia Mathematica

In earlier papers we have introduced and studied a new notion of positivity in operator algebras, with an eye to extending certain C*-algebraic results and theories to more general algebras. Here we continue to develop this positivity and its associated ordering, proving many foundational facts. We also give many applications, for example to noncommutative topology, noncommutative peak sets, lifting problems, peak interpolation, approximate identities, and to order relations between an operator...

Orlicz spaces associated with a semi-finite von Neumann algebra

Sh. A. Ayupov, V. I. Chilin, R. Z. Abdullaev (2012)

Commentationes Mathematicae Universitatis Carolinae

Let M be a von Neumann algebra, let ϕ be a weight on M and let Φ be N -function satisfying the ( δ 2 , Δ 2 ) -condition. In this paper we study Orlicz spaces, associated with M , ϕ and Φ .

Outers for noncommutative H p revisited

David P. Blecher, Louis E. Labuschagne (2013)

Studia Mathematica

We continue our study of outer elements of the noncommutative H p spaces associated with Arveson’s subdiagonal algebras. We extend our generalized inner-outer factorization theorem, and our characterization of outer elements, to include the case of elements with zero determinant. In addition, we make several further contributions to the theory of outers. For example, we generalize the classical fact that outers in H p actually satisfy the stronger condition that there exist aₙ ∈ A with haₙ ∈ Ball(A)...

Currently displaying 1 – 5 of 5

Page 1