Calcul stochastique non commutatif
It is shown that every von Neumann algebra whose centre determines the state space is already abelian.
A brief introduction to -graded quantum stochastic calculus is given. By inducing a superalgebraic structure on the space of iterated integrals and using the heuristic classical relation df(Λ) = f(Λ + dΛ) - f(Λ) we provide an explicit formula for chaotic expansions of polynomials of the integrator processes of -graded quantum stochastic calculus.
This is a continuation of the earlier work (Publ. Res. Inst. Math. Sci.45 (2009) 745–785) to characterize unitary stationary independent increment gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with technical assumptions on the domain of the generator, unitary equivalence of the process to the solution of an appropriate Hudson–Parthasarathy equation is proved.
The category of von Neumann correspondences from 𝓑 to 𝓒 (or von Neumann 𝓑-𝓒-modules) is dual to the category of von Neumann correspondences from 𝓒' to 𝓑' via a functor that generalizes naturally the functor that sends a von Neumann algebra to its commutant and back. We show that under this duality, called commutant, Rieffel's Eilenberg-Watts theorem (on functors between the categories of representations of two von Neumann algebras) switches into Blecher's Eilenberg-Watts theorem (on functors...
Two important examples of q-deformed commutativity relations are: aa* - qa*a = 1, studied in particular by M. Bożejko and R. Speicher, and ab = qba, studied by T. H. Koornwinder and S. Majid. The second case includes the q-normality of operators, defined by S. Ôta (aa* = qa*a). These two frameworks give rise to different convolutions. In particular, in the second scheme, G. Carnovale and T. H. Koornwinder studied their q-convolution. In the present paper we consider another convolution of measures...