Stability of the Jensen-type functional equation in -algebras: a fixed point approach.
We show that recently introduced noncommutative -spaces can be used to constructions of Markov semigroups for quantum systems on a lattice.
We show that the set of those Markov semigroups on the Schatten class ₁ such that in the strong operator topology , where Q is a one-dimensional projection, form a meager subset of all Markov semigroups.
The aim of this work is to develop the variational approach to the Dirichlet problem for generators of sub-Markovian semigroups on C*-algebras. KMS symmetry and the KMS condition allow the introduction of the notion of weak solution of the Dirichlet problem. We will then show that a unique weak solution always exists and that a generalized maximum principle holds true.
Given a von Neumann algebra M, we consider the central extension E(M) of M. We introduce the topology t c(M) on E(M) generated by a center-valued norm and prove that it coincides with the topology of local convergence in measure on E(M) if and only if M does not have direct summands of type II. We also show that t c(M) restricted to the set E(M)h of self-adjoint elements of E(M) coincides with the order topology on E(M)h if and only if M is a σ-finite type Ifin von Neumann algebra.
It is well known that every derivation of a von Neumann algebra into itself is an inner derivation and that every derivation of a von Neumann algebra into its predual is inner. It is less well known that every triple derivation (defined below) of a von Neumann algebra into itself is an inner triple derivation. We examine to what extent all triple derivations of a von Neumann algebra into its predual are inner. This rarely happens but it comes close. We prove a (triple) cohomological...