The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Layer potentials C*-algebras of domains with conical points

Catarina Carvalho, Yu Qiao (2013)

Open Mathematics

To a domain with conical points Ω, we associate a natural C*-algebra that is motivated by the study of boundary value problems on Ω, especially using the method of layer potentials. In two dimensions, we allow Ω to be a domain with ramified cracks. We construct an explicit groupoid associated to ∂Ω and use the theory of pseudodifferential operators on groupoids and its representations to obtain our layer potentials C*-algebra. We study its structure, compute the associated K-groups, and prove Fredholm...

Les motifs de Tate et les opérateurs de périodicité de Connes

Abhishek Banerjee (2014)

Annales mathématiques Blaise Pascal

Dans cet article, nous définissons une catégorie M o t ˜ C des motifs sur une catégorie monoïdale symétrique ( C , , 1 ) vérifiant certaines hypothèses. Le rôle des espaces sur ( C , , 1 ) est joué par les monoïdes (non necessairement commutatifs) dans C . Pour définir les morphismes dans M o t ˜ C , nous utilisons des classes dans les groupes d’homologie cyclique bivariante. Le but est de montrer que les opérateurs de périodicité de Connes induisent des morphismes M 𝕋 2 M dans M o t ˜ C , où 𝕋 est le motif de Tate dans M o t ˜ C .

Currently displaying 1 – 4 of 4

Page 1