Page 1

Displaying 1 – 2 of 2

Showing per page

A noncommutative 2-sphere generated by the quantum complex plane

Ismael Cohen, Elmar Wagner (2012)

Banach Center Publications

S. L. Woronowicz's theory of C*-algebras generated by unbounded elements is applied to q-normal operators satisfying the defining relation of the quantum complex plane. The unique non-degenerate C*-algebra of bounded operators generated by a q-normal operator is computed and an abstract description is given by using crossed product algebras. If the spectrum of the modulus of the q-normal operator is the positive half line, this C*-algebra will be considered as the algebra of continuous functions...

A Reproducing Kernel and Toeplitz Operators in the Quantum Plane

Stephen Bruce Sontz (2013)

Communications in Mathematics

We define and analyze Toeplitz operators whose symbols are the elements of the complex quantum plane, a non-commutative, infinite dimensional algebra. In particular, the symbols do not come from an algebra of functions. The process of forming operators from non-commuting symbols can be considered as a second quantization. To do this we construct a reproducing kernel associated with the quantum plane. We also discuss the commutation relations of creation and annihilation operators which are defined...

Currently displaying 1 – 2 of 2

Page 1