The search session has expired. Please query the service again.
Displaying 281 –
300 of
317
An explicit representation of the n-fold symmetric tensor product (equipped with a natural topology τ such as the projective, injective or inductive one) of the finite direct sum of locally convex spaces is presented. The formula for gives a direct proof of a recent result of Díaz and Dineen (and generalizes it to other topologies τ) that the n-fold projective symmetric and the n-fold projective “full” tensor product of a locally convex space E are isomorphic if E is isomorphic to its square .
We exhibit examples of countable injective inductive limits E of Banach spaces with compact linking maps (i.e. (DFS)-spaces) such that is not an inductive limit of normed spaces for some Banach space X. This solves in the negative open questions of Bierstedt, Meise and Hollstein. As a consequence we obtain Fréchet-Schwartz spaces F and Banach spaces X such that the problem of topologies of Grothendieck has a negative answer for . This solves in the negative a question of Taskinen. We also give...
The existence of unbounded *-representations of (locally convex) tensor product *-algebras is investigated, in terms of the existence of unbounded *-representations of the (locally convex) factors of the tensor product and vice versa.
An application of Mittag-Leffler lemma in the category of quotients of Fréchet spaces. We use Mittag-Leffler Lemma to prove that for a nonempty interval , the restriction mapping is surjective and we give a corollary.
Currently displaying 281 –
300 of
317