A Free Convenient Vector Space for Holomorphic Spaces.
We prove that for every closed locally convex subspace E of and for any continuous linear operator T from to there is a continuous linear operator S from to such that T = QS where Q is the quotient map from to .
Let A be a unital strict Banach algebra, and let K + be the one-point compactification of a discrete topological space K. Denote by the weak tensor product of the algebra A and C(K +), the algebra of continuous functions on K +. We prove that if K has sufficiently large cardinality (depending on A), then the strict global dimension is equal to .
We study the structure of Lipschitz algebras under the notions of approximate biflatness and Johnson pseudo-contractibility. We show that for a compact metric space , the Lipschitz algebras and are approximately biflat if and only if is finite, provided that . We give a necessary and sufficient condition that a vector-valued Lipschitz algebras is Johnson pseudo-contractible. We also show that some triangular Banach algebras are not approximately biflat.